We have, 2x2−(3+7i)x+(9i−3)=0
On comparing with general form of quadratic
equation ax2+bx+c=0
We get a=1,b=−(3+7i),c=(9i−3)
Roots of the equation are
x=−b±√b2−4ac2a
=(3+7i)±√(−(3+7i))2−4(2)(9i−3)2×2
=(3+7i)±√(9+2×3×78+49i2)−8(9i−3)4
=(3+7i)±√(9+42i−49−72i+244
x=(3+7i)±√−16−30i4
x=(3+7i)±√9−2×3×5i−254
x=(3+7i)±√32−2×3×5i+(5i)24
=(3+7i)±√(3−5i)24
=(3+7i)±(3−5i)4
=(3+7i)+(3−5i)4,(3+7i)−(3−5i)4
=(6+2i)4,(12i)4
=(3+i2),3i
Hence, the roots are 3+i2 and 3i