9x2−9(a+b)x+(2a2+5ab+2b2)=0
Comparing given equation with the standard form Ax2+Bx+C=0, we get
A=9,B=−9(a+b),C=2a2+5ab+2b2
Using quadratic formula,
x=−B±√B2−4AC2A
So,
x=9(a+b)±√81(a+b)2−36(2a2+5ab+2b2)18
=9(a+b)±3√9a2+9b2+18ab−8a2−20ab−8b218
=9(a+b)±3√a2+b2−2ab18
=9(a+b)±3√(a−b)218
=9(a+b)±3(a−b)18
⇒x=9a+9b+3a−3b18orx=9a+9b−3a+3b18⇒x=2a+b3Orx=a+b3