Solve the following quadratic equation by factorization.
2x+1+32(x−2)=235x;x≠0,−1,2
2x+1+32(x−2)=235x;x≠0,−1,2
2x+1+32x−4=235x
2(2x−4)+3(x+1)(x+1)(2x−4)=235x
4x−8+3x+3(x+1)(2x−4)=235x
7x−52x2−2x−4=235x
(7x−5)5x=23(2x2−2x−4)
35x2−25x=46x2−46x−92)
11x2−21x−92=0
11x2−44x+23x−92=0
11x(x−4)+23(x−4)=0
(x−4)(11x+23)=0
Therefore,
x=4,−2311