Solve the following quadratic equation by factorization.
3x+1−12=23x−1,x≠−1,13
3x+1−12=23x−1,x≠−1,13
6−x−12x+2=23x−1
5−x2x+2=23x−1
(5−x)(3x−1)=2(2x+2)
15x−5−3x2+x=4x+4
16x−5−3x2−4x−4=0
−3x2+12x−9=0
3x2−12x+9=0
x2−4x+3=0
x2−x−3x+3=0
x(x−1)−3(x−3)=0
(x−3)(x−1)=0
Therefore,
x=3,1