Solve the following quadratic equation by factorization.
5+x5−x−5−x5+x=334;x≠5,−5
5+x5−x−5−x5+x=334;x≠5,−5
(5+x)(5+x)−(5−x)(5−x)(5−x)(5+x=154
(5+x)2−(5−x)2(52−x2)=154
(25+10x+x2)−(25−10x+x2)(25−x2)=154
(25+10x+x2−25+10x−x2)(25−x2)=154
(20x)(25−x2)=154
(20x×4)=15×(25−x2)
(80x)=375−15x2
15x2+80x−375=0
3x2+16x−75=0
3x2−9x+25x−75=0
3x(x−3)+25(x−3)=0
(x−3)(3x+25)=0
Therefore,
x=3,−253