Solve the following quadratic equation by factorization.
x−ax−b+x−bx−a=ab+ba
= (2x2-2x(a+b)+a2+b2)ab = (a2+b2)(x2-(a+b)x+ab)
= (2abx2-2abx(a+b)+ab(a2+b2)) = (a2+b2)(x2-(a2+b2)(a+b)x+(a2+b2)(ab)
= (a2+b2-2ab)x-(a+b)(a2+b2-2ab)x=0
= (a-b)2x2-(a+b)(a+b)2x2=0
= x(a-b)2(x-(a+b))=0
= x(x-(a+b))=0
Either x= 0
Or, (x-(a+b))=0
Therefore x= a+b
The roots of the above mentioned quadratic equation are 0 and a+b respectively.