wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following quadratic equation by factorization.
xaxb+xbxa=ab+ba

Open in App
Solution

equals fraction numerator x minus a over denominator x minus b end fraction plus fraction numerator x minus b over denominator x minus a end fraction equals a over b plus b over a equals fraction numerator left parenthesis x minus a right parenthesis squared plus left parenthesis x minus b right parenthesis squared over denominator left parenthesis x minus a right parenthesis left parenthesis x minus b right parenthesis end fraction equals a over b plus b over a equals fraction numerator x squared minus 2 a x plus a squared plus x squared minus 2 b x plus b squared over denominator x squared plus a b minus b x minus a x end fraction equals fraction numerator a squared plus b squared over denominator a b end fraction

= (2x2-2x(a+b)+a2+b2)ab = (a2+b2)(x2-(a+b)x+ab)

= (2abx2-2abx(a+b)+ab(a2+b2)) = (a2+b2)(x2-(a2+b2)(a+b)x+(a2+b2)(ab)

= (a2+b2-2ab)x-(a+b)(a2+b2-2ab)x=0

= (a-b)2x2-(a+b)(a+b)2x2=0

= x(a-b)2(x-(a+b))=0

= x(x-(a+b))=0

Either x= 0

Or, (x-(a+b))=0

Therefore x= a+b

The roots of the above mentioned quadratic equation are 0 and a+b respectively.


flag
Suggest Corrections
thumbs-up
207
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Factorisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon