Solve the following quadratic equation by factorization method: [4 MARKS]
4x2−4a2x+(a4−b4)=0
Concept: 1 Mark
Steps: 2 Marks
Answer: 1 Mark
We have,
4x2−4a2x+(a4−b4)=0
Here, Constant term =a4−b4=(a2−b2)(a2+b2)
and, Coefficient of middle term =−4a2
Also, Coefficient of the middle term −4a2=−{2(a2+b2)+2(a2−b2)}
∴4x2−4a2x+(a4−b4)=0
⇒4x2−{2(a2+b2)+2(a2−b2)}x+(a2−b2)(a2+b2)=0
⇒4x2−2(a2+b)x−2(a2−b2)x+(a2−b2)(a2+b2)=0
⇒{4x2−2(a2+b2)x}−{2(a2−b2)x−(a2−b2)(a2+b2)}=0
⇒2x{2x−(a2+b2)}−(a2−b2){2x−(a2+b2)}=0
⇒{2x−(a2+b2)}{2x−(a2−b2)}=0
⇒2x−(a2+b2)=0 or, 2x−(a2−b2)=0⇒x=a2+b22 or, x=a2−b22