Given,
1(x−1)(x−2)+1(x−2)(x−3)+1(x−3)(x−4)=16
6(x−3)(x−4)+6(x−1)(x−4)+6(x−1)(x−2)=(x−1)(x−2)(x−3)(x−4)
6[(x−3)(x−4)+(x−1)(x−4)+(x−1)(x−2)]=(x−1)(x−2)(x−3)(x−4)
6[x2−7x+12+x2−5x+4+x2−3x+2]=(x−1)(x−2)(x−3)(x−4)
6(3x2−15x+18)=x4−10x3+35x2−50x+24
18x2−90x+108=x4−10x3+35x2−50x+24
solving the above equation, we get,
x4−10x3+17x2+40x−84=0
(x+2)(x−2)(x−3)(x−7)=0
as undefined points are 2,3
∴x=−2,7
sum of roots=(-2)+(+7)=5