The given equation is 4x2+4bx−(a2−b2)=0 ....(i)
Comparing equation (i) with quadratic equation Ax2+Bx+C=0, we get
A=4, B=4b, C=−(a2−b2)
By quadratic formula
x=−B ± √B2−4AC2A
x=−4b ± √16b2+4×4×(a2−b2)2×4
x=−4b ± √16b2+16a2−16b28
x=−4b ± 4a8
x=−b ± a2
Therefore, x=−b−a2⇒−(a+b2)
or x=−b+a2⇒a−b2
Hence, x=−(a+b2) and x=a−b2.