x=−b±√b2−4ac2a
=(3√2+2i)±√(−(3√2+2i))2−4×1×6√2i2×1
=(3√2+2i)±√(18+12√2i−4)−24√2i2
=(3√2+2i)±√(18−12√2i−4)2
=(3√2+2i)±√(3√2)2−2×2√2×2i+(2i)22
=(3√2+2i)±√(3√2−2i)22
=(3√2+2i)±(3√2−2i)2
=(3√2+2i)+(3√2−2i)2,(3√2+2i)−(3√2−2i)2
=3√2,2i
Hence, the roots are 3√2and2i.