x=−b±√b2−4ac2a
=(5−i)±√(−(5−i))2−4×1×(18+i)2×1
=(5−i)±√(25−10i+i2)2−4×1×(18+i)2×1
=(5−i)±√(25−10i−1)−(72+4i)2
=(5−i)±√(−47−14i−1)2
=(5−i)±√(−48−14i)2
=(5−i)±√(−49−14i+1)2
=(5−i)±√−(49+14i−1)2
=(5−i)±√−(72+2×7×i+i2)2
=(5−i)±√−(7+i)22
=(5−i)±(7+i)√−12
=(5−i)±(7+i)i2
=(5−i)±(7i−1)2=(5−i)±(−1+7i)2
=(5−i)+(−1+7i)2,(5−i)−(−1+7i)2
=4+6i2,6−8i2
=2+3i,3−4i
Hence, the roots are (3−4i)and(2+3i).