wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following quadratic equation:
(iii) (2+i)x2(5i)x+2(1i)=0

Open in App
Solution

We have,
(2+i)x2(5i)x+2(1i)=0
On comparing with general form of quadratic equation
ax2+bx+c=0
We get a=(2+i),b=(5i),c=2(1i)
Roots of the equation are

x=b±b24ac2a

=(5i)±((5i))24×(2+i)×2(1i)2×(2+i)

=(5i)±(2510i+i2)8(2+i)(1i)2(2+i)

x=(5i)±(2510i1)8(22i+i=i2)2(2+i)

=(5i)±(2410i)8(2i+1)2(2+i)

=(5i)±(2410i)(248i)2(2+i)

=(5i)±2i2(2+i)

=(5i)±12i12(2+i)

=(5i)±12×1×i+i22(2+i)

x=(5i)±(1i)22(2+4)=(5i)±(1i)2(2+i)

=(5i)+(1i)2(2+i),(5i)(1i)2(2+i)

=62i2(2+i),42(2+i)

=3i(2+i),2(2+i)

=(3i)(2i)(2+i)(2i),2(2i)(2+i)(2i)

x=(62i3i+i2)22i2,42i22i2

=(65i1)4+1,42i4+1

=(1i),42i5

Hence, the roots are (1i)&(452i5)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon