x=−b±√b2−4ac2a
=(5−i)±√(−(5−i))2−4×(2+i)×2(1−i)2×(2+i)
=(5−i)±√(25−10i+i2)−8(2+i)(1−i)2(2+i)
x=(5−i)±√(25−10i−1)−8(2−2i+i=i2)2(2+i)
=(5−i)±√(24−10i)−8(2−i+1)2(2+i)
=(5−i)±√(24−10i)−(24−8i)2(2+i)
=(5−i)±√−2i2(2+i)
=(5−i)±√1−2i−12(2+i)
=(5−i)±√1−2×1×i+i22(2+i)
x=(5−i)±√(1−i)22(2+4)=(5−i)±(1−i)2(2+i)
=(5−i)+(1−i)2(2+i),(5−i)−(1−i)2(2+i)
=6−2i2(2+i),42(2+i)
=3−i(2+i),2(2+i)
=(3−i)(2−i)(2+i)(2−i),2(2−i)(2+i)(2−i)
x=(6−2i−3i+i2)22−i2,4−2i22−i2
=(6−5i−1)4+1,4−2i4+1
=(1−i),4−2i5
Hence, the roots are (1−i)&(45−2i5)