x=−b±√b2−4ac2a
=(2+i)±√(−(2+i))2−4×1×{−(1−7i)}2×1
=(2+i)±√(22+4i+i2)+(4−28i)2
=(2+i)±√(4+4i−1)+(4−28i)2
x=(2+i)±√7−24i2
=(2+i)±√16−24i−92
=(2+i)±√42−2×4×3i+(3i)22
=(2+i)±√(4−3i)22=(2+i)±(4−3i)2
=(2+i)+(4−3i)2,(2+i)−(4−3i)2
=6−2i2,−2+4i2
=(3−i),(−1+2i)
Hence, the roots are (3−i)and(−1+2i)