1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
General Solution of tan theta = tan alpha
Solve the fol...
Question
Solve the following quadratic equations.
(1)
1
x
+
5
=
1
x
2
(2)
x
2
-
3
x
10
-
1
10
=
0
(3)
2
x
+
3
2
=
25
(4)
m
2
+
5
m
+
5
=
0
(5)
5
m
2
+
2
m
+
1
=
0
(6)
x
2
-
4
x
-
3
=
0
Open in App
Solution
(1)
1
x
+
5
=
1
x
2
⇒
x
2
=
x
+
5
⇒
x
2
-
x
-
5
=
0
⇒
x
=
-
-
1
±
-
1
2
-
4
×
1
×
-
5
2
×
1
⇒
x
=
1
±
1
+
20
2
=
1
±
21
2
(2)
x
2
-
3
x
10
-
1
10
=
0
⇒
10
x
2
-
3
x
-
1
=
0
⇒
x
=
-
-
3
±
-
3
2
-
4
×
10
×
-
1
2
×
10
⇒
x
=
3
±
9
+
40
20
=
3
±
49
20
⇒
x
=
3
±
7
20
⇒
x
=
3
+
7
20
,
3
-
7
20
⇒
x
=
10
20
,
-
4
20
⇒
x
=
1
2
,
-
1
5
(3)
2
x
+
3
2
=
25
⇒
4
x
2
+
9
+
12
x
=
25
⇒
4
x
2
+
12
x
-
16
=
0
⇒
x
2
+
3
x
-
4
=
0
⇒
x
2
+
4
x
-
x
-
4
=
0
⇒
x
x
+
4
-
1
x
+
4
=
0
⇒
x
-
1
x
+
4
=
0
⇒
x
=
1
,
-
4
(4)
m
2
+
5
m
+
5
=
0
⇒
m
=
-
5
±
5
2
-
4
×
1
×
5
2
⇒
m
=
-
5
±
25
-
20
2
⇒
m
=
-
5
±
5
2
(5)
5
m
2
+
2
m
+
1
=
0
⇒
m
=
-
2
±
2
2
-
4
×
1
×
5
2
⇒
m
=
-
2
±
4
-
20
2
⇒
m
=
-
2
±
-
16
2
So, the roots are not real as the discriminant is negative.
(6)
x
2
-
4
x
-
3
=
0
⇒
x
=
-
-
4
±
-
4
2
-
4
×
1
×
-
3
2
×
1
⇒
x
=
4
±
16
+
12
2
⇒
x
=
4
±
28
2
⇒
x
=
4
±
2
7
2
⇒
x
=
2
±
7
Suggest Corrections
11
Similar questions
Q.
Solve the following quadratic equations by completing the square method.
(1) x
2
+ x – 20 = 0
(2) x
2
+ 2x – 5 = 0
(3) m
2
– 5m = –3
(4) 9y
2
– 12y + 2 = 0
(5) 2y
2
+ 9y +10 = 0
(6) 5x
2
= 4x + 7
Q.
Solve the following quadratic equations by factorisation.
(1) x
2
– 15x + 54 = 0
(2) x
2
+ x – 20 = 0
(3) 2y
2
+ 27y + 13 = 0
(4) 5m
2
= 22m + 15
(5) 2x
2
– 2x +
1
2
= 0
(6)
6
x
-
2
x
=
1
(7)
2
x
2
+
7
x
+
5
2
=
0
to solve this quadratic equation by factorisation, complete the following activity.
(8)
3
x
2
-
2
6
x
+
2
=
0
(9)
2
m
m
-
24
=
50
(10)
25
m
2
=
9
(11)
7
m
2
=
21
m
(12)
m
2
-
11
=
0
Q.
Solve using formula.
(1) x
2
+ 6x + 5 = 0
(2) x
2
– 3x – 2 = 0
(3) 3m
2
+ 2m – 7 = 0
(4) 5m
2
– 4m – 2 = 0
(5)
y
2
+
1
3
y
=
2
(6) 5x
2
+ 13x + 8 = 0
Q.
Solve graphically.
(1)
(2)
(3)
(4)
(5)
(6)