Concept : 1 Mark
Application : 1 Mark
Calculation : 2 Marks
We have,
4x2−4ax+(a2−b2)=0
Here, Constant term =(a2−b2)=(a−b)(a+b)
and, coefficient of middle term =−4a
Also, Coefficient of the middle term −4a=−{2(a+b)+2(a−b)}
∴4x2−4ax+(a2−b2)=0
⇒4x2−{2(a+b)+2(a−b)}x+(a+b)(a−b)=0
⇒4x2−2(a+b)x−2(a−b)x+(a+b)(a−b)=0
⇒{4x2−2(a+b)x}−{2(a−b)x−(a+b)(a−b)}=0
⇒2x{2x−(a+b)}−(a−b){2x−(a+b)}=0
⇒{2x−(a+b)}{2x−(a−b)}=0
⇒{2x−(a+b)}=0 or, {2x−(a−b)}=0
⇒2x=a+b or, 2x=a−b⇒x=a+b2 or, x=a−b2