Solve the following quadratic equations by factorization method :
(i) x2+10ix−21=0
(ii) x2+(1−2i)x−2i=0
(iii) x2−(2√3+3i)x+6√3i=0
(iv)6x2−17ix−12=0
(i) x2+10ix−21=0⇒x2+10ix+21i2=0 [∵i2=−1]⇒x2+7ix+3ix+21i2=0⇒x(x+7i)+3i(x+7i)=0⇒(x+3i)(x+7i)=0∴x=−3i,−7i
(ii) x2+(1−2i)x−2i=0⇒x2+x−2i−2i=0⇒x(x+1)−2i(x+1)=0⇒(x−2i)(x+1)=0⇒x=2i,−1 (iii) x2−(2√3+3i)x+6√3i=0⇒x2−2√3x−3ix+6√3i=0⇒x(x−2√3)−3i(x−2√3)=0⇒(x−3i)(x−2√3)=0⇒x=3i,2√3
(iv)6x2−17ix−12=0⇒6x2−17ix−12=0 [∵i2=−1]⇒6x2−9ix−8ix+12i2=0⇒3x(2x−3i)−4i(2i−3i)=0⇒(3x−4i)(2x−3i)=0⇒x=43i Or 32i