wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following quadratic equations :

(i)x2(32+2i)x+62i=0

(ii)x2(5i)x+(18+i)=0

(iii)(2+i)x2(5i)x+2(1i)=0

(iv)x2(2+i)x(17i)=0

(v)ix24x4i=0

(vi)x2+4ix4=0

(vii)2x2+15ixi=0

(viii)x2x+(1+i)=0

(ix)ix2x+12i=0

(x)x2(322i)x2i=0

(xi)x2(2+i)x+2i=0

(xii)2x2(3+7i)x+(9i3)=0

Open in App
Solution

(i)x2(32+2i)x+62i=0 x232x2ix+2i=0x(x32)2i(x32)=0(x2i)(x32)=0x=2i Or 32

(ii)x2(5i)x+(18+i)=0 x25xix+18+i=0x2(34i)x(2+3i)x+(18+i)=0x(x(34i))(2+3i)(x(34i))=0(x(2+3i))(x(34i))=0x=2+3i Or 34i

(iii)(2+i)x2(5i)x+2(1i)=0 (2+i)x2(5i)x+2(1i)=0(2+i)x22x(3i)x+2(1i)=0x[(2+i)2](1i)[(2+i)x2]=0[x(1i)][(2+i)x2]=0either [x(1i)]=0 Or [(2+i)x2]=0x=1i Or x=22+ix=1i Or x=2×2i(2+i)(2i)Or x =42i4+1=4525iThus,x=1i,4525i

(iv)x2(2+i)x(17i)=0 x2(2+i)x(17i)=0x2(3i)x+(12i)x(17i)=0x(x(3i))+(12i)(x(3i))=0[x+(12i)][x(3i)]=0x=1+2i,3i

(v)ix24x4i=0 ix2+4i2x+4i3=0 [i2=1]x2+4ix+4i2=0x2+2ix+2ix+4i2=0x(x+2i)+2i(x+2i)=0(x+2i)(x+2i)x=2i,2i

(vi)x2+4ix4=0 x2+4ix+4i2=0 [i2=1]x2+2ix+2ix+4i2=0x(x+2i)+2i(x+2i)=0(x+2i)(x+2i)=0x=2i,2i

(vii)2x2+15ixi=0 2x2+15ixi=0Comparing the given equation with the general formax2+bx+c=0,we get a=2,b=15i,c=iSubstituting a and b in,α=b±b24ac2a and β=bb24ac2aα=15i+15+8i4 andβ=15i15+8i4Let 15+8ia+bi15+8i=(a+bi)215+8i=a2b2+2abia2b2=15 and 2abi=8iNow,(a2b2)=(a2b2)+4a2b2(a2+b2)=(15)2+64=289a2+b2=17Solving a2b2=15 and a2+b2=17, we geta2=1 and b2=16a = ±1 and b = ±4a=1,b=4ora=1,b=415+8i=1+4i,14iwhen 15+8i=1+4iα=sqrt15i+1+4i4=1+(415)4iandβ=15i(1+4i)4=1(4+15)4iwhen15+8i=14i=α=sqrt15i14i4=1+(415)4i

(viii)x2x+(1+i)=0 x2x+(1+i)=0x2ix(1i)x+i(1i)=0(xi)(x(1i))=0x=i,1=i

(ix)ix2x+12i=0 We will apply discriminant rule, on ax2+bx+c=0,x=b±b24ac2aNow,ix2x+12i=0x=(1)±(1)24(i)(12i)2i=1±1+482i=1±492i=1±72i=82i,62i=4i,3i=4i,3i (x)x2(322i)x2i=0 We will apply discriminant rule,ax2+bx+c=0,x=b±b24ac2aNow,x2(322i)x2i=0x=(322i)±[(322i)2]4(1)(2i)2(1)=(322i)±(322i)2+42i2=322i2±42i2

(xi)x2(2+i)x+2i=0 x22xix+2i=0x(x2)i(x2)=0(xi)(x2)=0x=i,2

(xii)2x2(3+7i)x+(9i3)=0 2x23x7ix+(9i3)=0(2x3i)(x3i)=0(x3+i2)(x3i)=0x=3+i2,3i


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Nature and Location of Roots
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon