Solve the following quadratic equations :
(i)x2−(3√2+2i)x+6√2i=0
(ii)x2−(5−i)x+(18+i)=0
(iii)(2+i)x2−(5−i)x+2(1−i)=0
(iv)x2−(2+i)x−(1−7i)=0
(v)ix2−4x−4i=0
(vi)x2+4ix−4=0
(vii)2x2+√15ix−i=0
(viii)x2−x+(1+i)=0
(ix)ix2−x+12i=0
(x)x2−(3√2−2i)x−√2i=0
(xi)x2−(√2+i)x+√2i=0
(xii)2x2−(3+7i)x+(9i−3)=0
(i)x2−(3√2+2i)x+6√2i=0 ⇒x2−3√2x−2ix+√2i=0⇒x(x−3√2)−2i(x−3√2)=0⇒(x−2i)(x−3√2)=0⇒x=2i Or 3√2
(ii)x2−(5−i)x+(18+i)=0 ⇒x2−5x−ix+18+i=0⇒x2−(3−4i)x−(2+3i)x+(18+i)=0⇒x(x−(3−4i))−(2+3i)(x−(3−4i))=0⇒(x−(2+3i))(x−(3−4i))=0⇒x=2+3i Or 3−4i
(iii)(2+i)x2−(5−i)x+2(1−i)=0 (2+i)x2−(5−i)x+2(1−i)=0⇒(2+i)x2−2x−(3−i)x+2(1−i)=0⇒x[(2+i)−2]−(1−i)[(2+i)x−2]=0⇒[x−(1−i)][(2+i)x−2]=0either [x−(1−i)]=0 Or [(2+i)x−2]=0⇒x=1−i Or x=22+i⇒x=1−i Or x=2×2−i(2+i)(2−i)Or x =4−2i4+1=45−25iThus,x=1−i,45−25i
(iv)x2−(2+i)x−(1−7i)=0 ⇒x2−(2+i)x−(1−7i)=0⇒x2−(3−i)x+(1−2i)x−(1−7i)=0⇒x(x−(3−i))+(1−2i)(x−(3−i))=0⇒[x+(1−2i)][x−(3−i)]=0⇒x=−1+2i,3−i
(v)ix2−4x−4i=0 ⇒ix2+4i2x+4i3=0 [∵i2=−1]⇒x2+4ix+4i2=0⇒x2+2ix+2ix+4i2=0⇒x(x+2i)+2i(x+2i)=0⇒(x+2i)(x+2i)∴x=−2i,−2i
(vi)x2+4ix−4=0 ⇒x2+4ix+4i2=0 [∵i2=−1]⇒x2+2ix+2ix+4i2=0⇒x(x+2i)+2i(x+2i)=0⇒(x+2i)(x+2i)=0⇒x=−2i,−2i
(vii)2x2+√15ix−i=0 2x2+√15ix−i=0Comparing the given equation with the general formax2+bx+c=0,we get a=2,b=√15i,c=−iSubstituting a and b in,α=−b±√b2−4ac2a and β=−b−√b2−4ac2aα=−√15i+√−15+8i4 andβ=−√15i−√−15+8i4Let √−15+8ia+bi⇒−15+8i=(a+bi)2⇒−15+8i=a2−b2+2abi⇒a2−b2=−15 and 2abi=8iNow,(a2−b2)=(a2−b2)+4a2b2⇒(a2+b2)=(−15)2+64=289⇒a2+b2=17Solving a2−b2=−15 and a2+b2=17, we geta2=1 and b2=16⇒a = ±1 and b = ±4⇒a=1,b=4ora=−1,b=−4∴√−15+8i=1+4i,−1−4iwhen √−15+8i=1+4iα=−sqrt15i+1+4i4=1+(4−√15)4iandβ=−√15i−(1+4i)4=−1−(4+√15)4iwhen√−15+8i=−1−4i=α=−sqrt15i−1−4i4=1+(4−√15)4i
(viii)x2−x+(1+i)=0 x2−x+(1+i)=0x2−ix−(1−i)x+i(1−i)=0(x−i)(x−(1−i))=0x=i,1=i
(ix)ix2−x+12i=0 We will apply discriminant rule, on ax2+bx+c=0,x=−b±√b2−4ac2aNow,ix2−x+12i=0x=−(−1)±√(−1)2−4(i)(12i)2i=1±√1+482i=1±√492i=1±72i=82i,−62i=4i,3i=−4i,3i (x)x2−(3√2−2i)x−√2i=0 We will apply discriminant rule,ax2+bx+c=0,x=−b±√b2−4ac2aNow,x2−(3√2−2i)x−√2i=0x=(3√2−2i)±√[−(3√2−2i)2]−4(1)(−√2i)2(1)=(3√2−2i)±√(3√2−2i)2+4√2i2=3√2−2i2±4−√2i2
(xi)x2−(√2+i)x+√2i=0 x2√2x−ix+√2i=0x(x−√2)−i(x−√2)=0(x−i)(x−√2)=0x=i,√2
(xii)2x2−(3+7i)x+(9i−3)=0 2x2−3x−7ix+(9i−3)=0(2x−3−i)(x−3i)=0(x−3+i2)(x−3i)=0x=3+i2,3i