wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following quadratic equations:
(i) x2-32+2i x+62i=0
(ii) x2-5-i x+18+i=0
(iii) 2+i x2-5-i x+2 1-i=0
(iv) x2-2+i x-1-7i=0
(v) i x2-4 x-4i=0
(vi) x2+4ix-4=0
(vii) 2x2+15ix-i=0
(viii) x2-x+1+i=0
(ix) ix2-x+12i=0
(x) x2-32-2i x-2 i=0
(xi) x2-2+i x+2i=0
(xii) 2x2-3+7i x+9i-3=0

Open in App
Solution

i x2-32+2i x+62i=0 x2-32 x-2i x+62i=0xx-32 -2ix-32=0x-32x-2i=0x-32=0 or x-2i=0x=32, 2iSo, the roots of the given quadratic equation are 32 and 2i.

ii x2-5-ix+18+i=0Comparing the given equation with the general form ax2+bx+c=0, we geta=1, b=-5-i and c=18+ix=-b±b2-4ac2ax=5-i±5-i2-418+i2x=5-i±5-i2-418+i2x=5-i±-48-14i2x=5-i±i48+14i2x=5-i±i49-1+2×7×i2x=5-i±i7+i22x=5-i±i7+i2x=5-i+i7+i2 or x=5-i-i7+i2x=2+3i, 3-4iSo, the roots of the given quadratic equation are 2+3i and 3-4i.

iii 2+i x2-5-i x+21-i=0Comparing the given equation with the general form ax2+bx+c=0, we geta=2+i, b=-5-i and c=21-ix=-b±b2-4ac2ax=5-i±5-i2-42+i21-i22+ix=5-i±-2i22+ix=5-i±-2i22+i ...iLet x+iy=-2i. Then,x+iy2=-2ix2-y2+2ixy=-2i x2-y2=0 and 2xy=-2 ...iiNow, x2+y22=x2-y22+4x2y2 x2+y22=4x2+y2=2 ...iiiFrom ii and iiix=±1 and y=±1As, xy is negative from iix=1, y=-1 or, x=-1, y=1x+iy=1-i or, -1+i-2i=±1-iSubstituting this value in i, we getx=5-i±1-i22+ix=1-i, 45-25iSo, the roots of the given quadratic equation are 1-i and 45-25i.

iv x2-2+i x-1-7i=0Comparing the given equation with the general form ax2+bx+c=0, we geta=1, b=-2+i and c=-1-7ix=-b±b2-4ac2ax=2+i±2+i2+41-7i2x=2+i±7-24i2 ... iLet x+iy=7-24i. Then,x+iy2=7-24ix2-y2+2ixy=7-24i x2-y2=7 and 2xy=-24 ... iiNow, x2+y22=x2-y22+4x2y2 x2+y22=49+576=625x2+y2=25 ... iii From ii and iiix=±4 and y=±3As, xy is negative From iix=-4, y=3 or, x=4, y=-3x+iy=-4+3i or, 4-3i7-24i=±4-3iSubstituting these values in i, we getx=2+i±4-3i2x=3-i, -1+2iSo, the roots of the given quadratic equation are 3-i and -1+2i.

v ix2-4x-4i=0ix2+4ix-4=0x2+4ix-4=0x+2i2=0x+2i=0x=-2iSo, the roots of the given quadratic equation are -2i and -2i.

vi x2+4ix-4=0x2+2×x×2i+2i2=0x+2i2=0x+2i=0x=-2iSo, the roots of the given quadratic equation are -2i and -2i.

vii 2x2+15 ix-i=0Comparing the given equation with the general form ax2+bx+c=0, we geta=2, b=15 i and c=-ix=-b±b2-4ac2ax=-15 i±15 i2+8i4x=-15 i±8i-154 ... iLet x+iy=8i-15. Then,x+iy2=8i-15x2-y2+2ixy=8i-15 x2-y2=-15 and 2xy=8 ... iiNow, x2+y22=x2-y22+4x2y2 x2+y22=225+64=289x2+y2=17 ... iii From ii and iiix=±1and y=±4As, xy is positive From iix=1, y=4 or, x=-1, y=-4 x+iy=1+4i or, -1-4i8i-15=±1-4iSubstituting these values in i, we get,x=-15 i±1+4i4 x= 1+4-15i4 , -1-4+15i4So, the roots of the given quadratic equation are 1+4-15i4 and -1-4+15i4.

viii x2-x+1+i=0Comparing the given equation with the general form ax2+bx+c=0, we geta=1, b=-1 and c=1+ix=-b±b2-4ac2ax=1 ±1-41+i2x=1±-3-4i2 ... iLet x+iy=-3-4i. Then,x+iy2=-3-4ix2-y2+2ixy=-3-4i x2-y2=-3 and 2xy=-4 ... iiNow, x2+y22=x2-y22+4x2y2 x2+y22=9+16=25x2+y2=5 ... iii From ii and iiix=±1 and y=±2As, xy is negative From iix=1, y=-2 or, x=-1, y=2x+iy=1-2i or -1+2i-3-4i=±1-2i Substituting these values in i, we getx=1±1-2i 2x=1-i, iSo, the roots of the given quadratic equation are 1-i and i.

ix ix2-x+12i=0ix2+ix+12=0x2+ix+12=0x2+4ix-3ix+12=0xx+4i-3ix+4i=0x+4ix-3i=0x+4i=0 or x-3i=0x=-4i , 3iSo, the roots of the given quadratic equation are -4i and 3i.

x x2-32-2i x-2i=0Comparing the given equation with the general form ax2+bx+c=0, we geta=1, b=-32-2i and c=-2ix=-b±b2-4ac2ax=32-2i±32-2i2+42i2x=32-2i±14-82i2 ... iLet x+iy=14-82i. Then,x+iy2=14-82ix2-y2+2ixy=14-82i x2-y2=14 and 2xy=-82 ... iiNow, x2+y22=x2-y22+4x2y2 x2+y22=196+128=324x2+y2= 18 ... iii From ii and iiix=±4 and y=±2As, xy is negative From iix=-4, y=2 or, x=4, y=-2x+iy=4-2 i or, -4+2 i14-82i=±4-2 iSubstituting these values in i, we getx=32-2i±4-2 i2x=32+4-i2+2 2, 32-4-i2-2 2So, the roots of the given quadratic equation are 32+4-i2+2 2 and 32-4-i2-2 2 .

xi x2-2+i x+2 i=0Comparing the given equation with the general form ax2+bx+c=0, we geta=1, b=-2+i and c=2ix=-b±b2-4ac2ax=2+i±2+i2-42i2x=2+i±1-22 i2 x=2+i±22-12-22 i2x=2+i±2-i22x=2+i±2-i2x=2, i So, the roots of the given quadratic equation are 2 and i.

xii 2x2-3+7i x+9i-3=0Comparing the given equation with the general form ax2+bx+c=0, we geta=2, b=-3+7i and c=9i-3x=-b±b2-4ac2ax=3+7i±3+7i2-89i-34x=3+7i±-16-30i4 ... iLet x+iy=-16-30i. Then,x+iy2=-16-30ix2-y2+2ixy=-16-30i x2-y2=-16 and 2xy=-30 ... iiNow, x2+y22=x2-y22+4x2y2 x2+y22=256+900=1156x2+y2= 34 ... iii From ii and iiix=±3 and y=±5As, xy is negative From iix=-3, y=5 or, x=3, y=-5x+iy=3-5 i or, -3+5 i14-82i=±3-5 iSubstituting these values in i, we getx=3+7i±3-5 i4x=3+i2, 3iSo, the roots of the given quadratic equation are 3+i2 and 3i .

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon