Given that, 2(y+3)−xydydx=0
⇒2(y+3)=xydydx
⇒2dxx=(y(y+3))dy
⇒2dxx=(y+3−3(y+3))dy
⇒2dxx=(1−3(y+3))dy
On integrating both sides, we get
2dxx=∫(1−3(y+3))dy
2logx=y−3log(y+3)+C...(i)
When x=1 and y=−2, then
2log1=−2−3log(−2+3)+C
⇒2.0=−2−3.0+C
⇒C=2
On substituting the value of C in Eq. (i), we get
2logx=y−3log(y+3)+2
⇒2logx+3log(y+3)=y+2
⇒logx2+log(y+3)3=(y+2)
⇒logx2(y+3)3=y+2
⇒x2(y+3)3=ey+2