Given equations: 14x+y=11;x+15y=6 can be simplified as
x+4y=44 ---- eq. (i) and 5x+y=30---- eq. (ii)
Multiplying eq. (ii) with 4, we get,
4(5x+y)=4×30
⟹20x+4y=120 ---- eq. (iii)
Now, subtracting eq. (i) from eq. (iii), we get,
⟹20x+4y−(x+4y)=120−44
⟹20x+4y−x−4y=76
⟹19x=76
⟹x=4
Now, substituting x=4 in eq. (ii), we get,
⟹5x+y=30
⟹5(4)+y=30
⟹20+y=30
⟹y=10
∴x=4 and y=10 is the solution for the given pair of linear equations.