x+2y+z=8.....(1)2x+3y−z=11.....(2)
3x−y−2z=5.....(3)
Adding eqn(1)&(2), we have
(x+2y+z)+(2x+3y−z)=8+11
⇒3x+5y=19.....(4)
Subtracting equation (2) from (3), we have
(3x−y−2z)−(2x+3y−z)=5−11
⇒x−4y−z=−6.....(5)
Now adding equation (1)&(5), we have
(x+2y+z)+(x−4y−z)=8−6
⇒2x−2y=2
⇒x−y=1.....(6)
Multiplying eqn(6) by 5, we get
5x−5y=5.....(7)
Adding eqn(4)&(7), we have
(3x+5y)+(5x−5y)=19+5
⇒8x=24
⇒x=3
Substituting the value of x in eqn(6), we get
3−y=1
⇒y=3−1=2
Substituting the value of x aand y in eqn(1), we get
3+(2×2)+z=8
⇒z=8−7=1
Hence x=3,y=2,z=1.