Simplification of given data
The system of equation is
3x−2y+3z=8
2x+y−z=1
4x−3y+2z=4
Writing equation as AX=B
⎡⎢⎣3−2321−14−32⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣814⎤⎥⎦
(A) (X) (B)
Hence,
A=⎡⎢⎣3−2321−14−32⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ & B=⎡⎢⎣814⎤⎥⎦
Calculate A−1
A=⎡⎢⎣3−2321−14−32⎤⎥⎦
|A|=∣∣
∣∣3−2321−14−32∣∣
∣∣
=3∣∣∣1−1−32∣∣∣−(−2)∣∣∣2−142∣∣∣+3∣∣∣214−3∣∣∣
=3(2−3)+2(4+4)+3(−6−4)
=−3+16−30=−17
Calculate adjoint A
M11=∣∣∣1−1−32∣∣∣=2−3=−1
M12=∣∣∣2−142∣∣∣=4+4=8
M13=∣∣∣214−3∣∣∣=−6−4=−10
M21=∣∣∣−23−32∣∣∣=−4+9=5
M22=∣∣∣3342∣∣∣=6−12=−6
M23=∣∣∣3−24−3∣∣∣=−9+8=−1
M31=∣∣∣−231−1∣∣∣=2−3=−1
M32=∣∣∣332−1∣∣∣=−3−6=−9
M33=∣∣∣3−221∣∣∣=3+4=7
Thus adj (A)=⎡⎢⎣A11A12A13A21A22A23A13A32A33⎤⎥⎦T=⎡⎢⎣A11A21A31A12A22A32A13A23A33⎤⎥⎦
=⎡⎢⎣M11−M21M31−M12M22−M23M13−M23M33⎤⎥⎦
=⎡⎢⎣−1−5−1−8−69−1017⎤⎥⎦
Calculating A−1
A−1=1|A|adj(A)
=1−17⎡⎢⎣−1−5−1−8−69−1017⎤⎥⎦
Solve for the value of x,y and z
X=A−1B
⇒⎡⎢⎣xyz⎤⎥⎦=1−17⎡⎢⎣−1−5−1−8−69−1017⎤⎥⎦⎡⎢⎣814⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=1−17⎡⎢⎣−1(8)+(−5)(1)+(−1)(4)−8(8)+(−6)(1)+9(4)−10(8)+1(1)+7(4)⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=−117⎡⎢⎣−8−5−4−64−6+36−80+1+28⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=−117⎡⎢⎣−17−34−51⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣123⎤⎥⎦
Therefore, x=1,y=2 and z=3