log4x−log2y=76xy=16
logxlog4−logylogx=76y=(16x)→1
(logx)2−(log4)(logy)(log4)(logx)=76
6(logx)2−6(log4)(logy)=7(log4)(logx)→2
From 1 and 2
6(logx)2−6(log4)(log(16x))=7(log4)(logx)
6(logx)2−6log4(2log4−logx)=7(log4)(logx)
6(logx)2−1(log4)(log4)+6(log4)(logx)−7(logx)(log4)=0
6(logx)2−(log4)(logx)−12(log4)2=0
(2logx−3log4)(3logx+4log4)=0
logx=32(log4)logx=−43log4
logx=log(4)3/2logx=log(4)−4/3
x=(4)3/2x=(4)−4/3
x=8
From 1
y=16xy=168=2
y=16(4)−4/3=42(4)4/3=4(2+43)=(4)(103)
(x,4):(8,2),(4−4/3,410/3)