Solve the following system of equations in R.
∣∣2x−1x−1∣∣>2
We have,
|2x−1|x−1−2>0|2x−1|−2(x−1)x−1>0|2x−1|−2x+2x−1>0 ...(i)Case I:when |2x−1|≥0i.e.,2x−1≥02x≥1x≥12⇒|2x−1|−2x+2>0 and x−1>0⇒2x−1−2x+2>0 and x>1⇒x>1 ...(ii)Case II: when |2x−1|<0i.e.,2x−1<02x<1x<12⇒−(2x−1)−2x+2>0 and x<1⇒−4+3>0⇒−x>−34⇒x<34 and x<1 xϵ(34,1) ...(iii)Combining (ii) and (iii) we get(34,1)∪(1,∞) as the solution set.