Solve the following system of equations, using matrix method; x+2y+z=7,x+3z=11,2x−3y=1.Find x+y+z
Open in App
Solution
The given system of equations is x+2y+z=7 x+0y+3z=11 2x−3y+0z=1 or ⎡⎢⎣1211032−30⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣7111⎤⎥⎦ or AX=B, where A⎡⎢⎣1211032−30⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ and B=⎡⎢⎣7171⎤⎥⎦ Now, |A|=⎡⎢⎣1211032−30⎤⎥⎦=18 So, the given system of equations has a unique solution given by X=A−1B. Therefore, adjA=⎡⎢⎣96−3−3−276−2−2⎤⎥⎦=⎡⎢⎣9−366−2−2−37−2⎤⎥⎦ ⇒A−1=1|A|adjA=118⎡⎢⎣9−366−2−2−37−2⎤⎥⎦ Now, X=A−1B ⇒X=118⎡⎢⎣9−366−2−2−37−2⎤⎥⎦⎡⎢⎣7111⎤⎥⎦=118⎡⎢⎣63−33+642−22−2−21+77−2⎤⎥⎦