=7+19−22=26−22=4≠0 A exists To find cofactors of A A11=+∣∣∣4−5−13∣∣∣=7A21=−∣∣∣−12−13∣∣∣=+1A31=+∣∣∣−124−5∣∣∣=−3 A12=−∣∣∣3523∣∣∣=−19A22=+∣∣∣1223∣∣∣=−1A32=−∣∣∣1235∣∣∣=+11 A13=+∣∣∣342−1∣∣∣=−11A23=−∣∣∣1−12−1∣∣∣=−1A33=+∣∣∣1−134∣∣∣=7 ∴Cofactormatrix=⎡⎢⎣7−19−111−103117⎤⎥⎦ adjA=⎡⎢⎣7−19−111−1−1−3117⎤⎥⎦=⎡⎢⎣71−3−19−111−11−17⎤⎥⎦ ∴A=adjA|A|=14⎡⎢⎣713−19−111−11−17⎤⎥⎦ ∴X=AB=14⎡⎢⎣713−19−111−11−17⎤⎥⎦⎡⎢⎣7−512⎤⎥⎦=14⎡⎢⎣49−5−36−133+5+132−77+5+84⎤⎥⎦=14⎡⎢⎣8412⎤⎥⎦ ∴X=[1]⇒x=2;y=1;z=3.