The given equations are
√3x−√2y=√3 ....(1)
√5x+√3y=√2 ...(2)
Let us eliminate y. To make the coefficients equal, we multiply the equation (1) by √3 and equation (2) by √2 to get
3x−√6y=3 ....(3)
√10x+√6y=2 ....(4)
Adding equation (3) and equation (4), we get
3x+√10x=5⇒(3+√10)x=5 [1 Mark]
⇒x=53+√10=(5√10+3)×(√10−3√10−3)
=5(√10−3)10−9=5(√10−3) [1 Mark]
Putting x=5(√10−3) in (1) we get
√3×5(√10−3)−√2y=√3
⇒5√30−15√3−√2y=√3
⇒√2y=5√30−15√3−√3
⇒√2y=5√30−16√3
⇒y=5√30√2−16√3√2=5√15−8√6
Hence, the solution is x=5(√10−3) and y=5√15−8√6 [ 1 Mark]