The correct option is B x=1, y=3, z=5
x−2y+z=0......(1)
9x−8y+3z=0.....(2)
2x+3y+5z=36....(3)
⇒eqn(1)×3−eqn(2)
3x−6y+3z=0
−9x+8y−3z=0
__________________
−6x+2y=0
−3x+y=0.....................(4)
⇒eqn(1)×5−eqn(3)
5x−10y+5z=0
−2x−3y−5z=−36
__________________
3x−13y=−36
−3x+y=0.....................(5)
eqn(4) + eqn(5) gives,
−3x+y=0
3x−13y=−36
_________________
−12y=−36
y=3......................(6)
Substituting eqn(6) in eqn(4), we get,
−3x+3=0
−3x=−3
x=1.............(7)
Substituting eqn(6) and eqn(7) in eqn(1). we get,
1−2(3)+z=0
1−6+z=0
−5+z=0
z=5.............(8)
Check:
Substituting the values of x, y and z in eqn(3), we get
LHS = 2x + 3y + 5z
= 2(1) + 3(3) + 5(5)
= 2 + 9 + 25
= 36
= RHS