Solve the following system of linear equations, using matrix method
2x+y+z=1,x−2y−z=32,3y−5x=9
The given system can be written as AX=B, where
A=⎡⎢⎣2112−4−203−5⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ and B=⎡⎢⎣139⎤⎥⎦
Here, |A|=⎡⎢⎣2112−4−203−5⎤⎥⎦=2(20+6)−1(−10−0)+1(6−0)=52+10+6=68≠0
Thus, A is non-singular, Therefore, its inverse exists.
Therefore, the given system is consistent and has a unique solution given by X=A−1B.
cofactors of A are
A11=20+6=26,A12=−(−10+0)=10,A13=6+0=6A21=−(−5−3)=8,A22=−10−0=−10,A23=−(6−0)=−6A31=(−2+4)=2,A32=−(−4−2)=6,A33=−8−2=−10
adj (A)=⎡⎢⎣261068−10−626−10⎤⎥⎦T=⎡⎢⎣268210−1066−6−10⎤⎥⎦
∴ A−1=1|a|(adj A)=168⎡⎢⎣268210−1066−6−10⎤⎥⎦
Now, X=A−1B⇒⎡⎢⎣xyz⎤⎥⎦=168⎡⎢⎣268210−1066−6−10⎤⎥⎦⎡⎢⎣139⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦=168⎡⎢⎣26+24+1810−30+546−18−90⎤⎥⎦=168⎡⎢⎣6834−102⎤⎥⎦⇒⎡⎢⎣xyz⎤⎥⎦=⎡⎢
⎢
⎢⎣112−32⎤⎥
⎥
⎥⎦
Hence, x=1,y=12 and z=−32.