Solve the following system of linear equations, using matrix method
x−y+z=4,2x+y−2z=0,x+y+z=2
The given system can be written as AX=B, where
A=⎡⎢⎣1−1121−3111⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ and B=⎡⎢⎣402⎤⎥⎦
Here, |A|=⎡⎢⎣1−1121−3111⎤⎥⎦=1(1+3)−(−1)(2+3)+1(2−1)=4+5+1=10≠0
Thus, A is non-singular, Therefore, its inverse exists.
Therefore, the given system is consistent and has a unique solution given by X=A−1B.
Cofactors of A are
A11=1+3=4,A12=−(2+3)=−5,A13=2−1=1,A21=−(−1−1)=2,A22=1−1=0,A23=−(1+1)=−2A31=3−1=2,A32=−(−3−2)=5,A33=1+2=3
∴ adj(A)=⎡⎢⎣4−5120−2253⎤⎥⎦=⎡⎢⎣422−5051−23⎤⎥⎦
∴A−1=1|A|(adj A)=110⎡⎢⎣422−5051−23⎤⎥⎦
Now, X=A−1B→⎡⎢⎣xyz⎤⎥⎦=110⎡⎢⎣422−5051−23⎤⎥⎦⎡⎢⎣402⎤⎥⎦
⇒ ⎡⎢⎣xyz⎤⎥⎦=110⎡⎢⎣16+0+4−20+0+104+0+6⎤⎥⎦⇒⎡⎢⎣xyz⎤⎥⎦=110⎡⎢⎣20−1010⎤⎥⎦=⎡⎢⎣2−11⎤⎥⎦
Hence, x=2,y=−1 and z=1