The given equations are
√3x−√2y=√3 .... (1)
√5x+√3y=√2 .... (2)
Let us eliminate y. To make the coefficient equal, we multiply the equation (1) by √3 and equation (2) by √2 to get
3x−√6y=3 .... (3) (0.5 Mark)
√10x+√6y=2 .... (4) (0.5 Mark)
Adding equation (3) and equation (4), we get
3x+√10x=5⇒(3+√10)x=5 (1 Mark)
⇒ x=53+√10= (5√10+3)×(√10−3√10−3)
=5(√10−3)10−9=5(√10−3)
Putting x=5 √10−3 in (1) we get
√3×5(√10−3)−√2y)=√3
⇒ 5√30−15√3−√2y=√3
⇒ √2y=5√30−15√3−√3
⇒ √2y=5√30−16√3
⇒ y=5√30√2−16√3√2=5√15−8√6
Hence, the solution is x = 5 √10−3) and y = 5√15−8√6 (1 Mark)