Solve the following systems of equations:
3x−y+711+2=10
2y+x+117=10
let3x−y+711+2=10
3x−y+711=8
(3x−y+711=8)×11
33x−(y+7)=88
33x−y=95⟶(i)
and(2y+x+117=10)×7
14y+x+11=70
x+14y=59⟶(ii)
nowlet(i)×14+(ii)
462x−14y=1330
x+14y=59
⟶463x=1389
⟶x=3
nowsubstitutex=3ineqn(ii)=x+14y=59
⟶3+14y=59
⟶14y=56
⟶y=4