The given system of equations is:
mx−ny=m2+n2x+y=2m
On simplification,
mx−ny−(m2+n2)=0....(1)x+y−2m=0 ....(2)
By cross multiplication method, we know that, for a system of linear equations in x and y, of the form a1x+b1y+c1=0 and a2x+b2y+c2=0, we have:
xb1c2−b2c1=yc1a2−c2a1=1a1b2−a2b1
Taking the values of a1, b1, c1, a2, b2 and c2 from (1) and (2), we get:
x−n(−2m)−1[−(m2+n2)]=y−(m2+n2)(1)−(−2m)(m)=1m(1)−1(−n)
⇒x2mn+m2+n2=ym2−n2=1m+n
Using the algebraic identities, (a+b)2=a2+b2+2ab and a2−b2=(a−b)(a+b), we get:
x(m+n)2=y(m+n)(m−n)=1m+n
Now, on comparing x(m+n)2 and 1m+n, we get:
x(m+n)2=1m+n
⇒x=(m+n)2m+n
∴ x=m+n
Similarly, on comparing y(m+n)(m−n) and 1m+n, we get:
y(m+n)(m−n)=1m+n
⇒y=(m+n)(m−n)m+n
∴ y=m−n
Hence, the solution of the given system of linear equations is x=m+n and y=m−n.