x2+y2−xy=13...(i)
x+y−√xy=3....(ii)
Simplifying equation (i)
x2+y2−xy=13
or, x2+y2+2xy−2xy−xy=13
or, (x+y)2−2xy−xy=13 [a2+b2+2ab=(a+b)2]
or, (x+y)2−3xy=13...(iii)
Simplifying equation (ii)
x+y−√xy=3
or, x+y=√xy+3....(iv)
Putting value of (x+y) in equation (iii)
(√xy+3)2−3xy=13
or, xy+9+6√xy−3xy=13
or, 6√xy−2xy=13−9
or, 6√xy−2xy=4
or, 4−6√xy+2xy=0
or, (√2xy)2−2×√2xy×3√2+(3√2)2−(3√2)2+4=0
or, (√2xy−3√2)2−94+4=0 [a2−2ab+b2=(a−b)2]
or, (√2xy−3√2)2=94−4
=9−164
=−74
Since, square of a real number is never negative
Hence, the given pair of equations will have
no real solution.