wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following :
(x24xy2y2)dx+(y24xy2x2)dy=0

Open in App
Solution

dydx=x2+4xy+2y2y24xy2x2=1+4yx+2y2x2y2x24yx2
Let yx=ry=tx
dydx=t+xdtdx
t+xdtdx=1+4t+2t2t24t2txdtdx=t3+6tx+6t1t24t2
t31+6t(t+1)t24t2=xdtdx
(t+1)(t2+1tt24t2=xdtdxt24t2(t1)(t2t+1)dt=dxx
t2t+13t3(t+1)(t2t+1)dt=dxxdtt+13dtt2t+1=Dxx
ln|t+1|3dt(t12)2+34=ln|x|+C
ln|t+1|3×23tan1∣ ∣ ∣ ∣t1232∣ ∣ ∣ ∣=ln|x|+C
ln|t+1|23tan12t13=ln|x|+C
lny+xx23tan1(2yx3x)=ln|x|+C

1226929_1398304_ans_85147645a8a247308c35e49f0d81f3c5.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon