If U(x)=ax2−bx
then the equilibrium position is x=x0 when U′(x0)=0
or −2ax30+bx20=0⇒=2ab
Now write : x=x0+y
Then U(x)=ax20−bx0+(x−x0)U′(x0)+12(x−x0)2U′′(x0)
But U′′(x0)=6ax40−2bx30=(2a/b)−3(3b−2b)=b4/8a3
So finally : U(x)=U(x0)+12(b48a3)y2+...
We neglect remaining terms for small oscillations and compare with the P.E. for a harmonic, oscillator :
12mω2y2=12(b48a3)y2, so ω=b2√8a3m
Thus T=2π√t8ma3b2
Note : Equilibrium position is generally a minimum of the potential energy. Then U′(x0)=0,U′′(x0)>0. The equilibrium position can in principle be a maximum but then U′′(x0)<0 and the frequency of oscillations about this equilibrium position will be dimensionally.