The given equation a(x2+1)=x(a2+1) can be simplified as shown below:
a(x2+1)=x(a2+1)⇒ax2+a=x(a2+1)⇒ax2−x(a2+1)+a=0
Thequadratic equation ax2−x(a2+1)+a=0 is in the form ax2+bx+c=0 where a=a,b=−(a2+1) and c=a.
We know that the quadratic formula is x=−b±√b2−4ac2a, therefore, substitute a=a,b=−(a2+1) and c=a in x=−b±√b2−4ac2a as follows:
x=−b±√b2−4ac2a=−(−(a2+1))±√(−(a2+1))2−(4×a×a)2×a
=(a2+1)±√a4+1+2a2−4a22a=(a2+1)±√a4+1−2a22a
=(a2+1)±√(a2−1)22a
=(a2+1)±(a2−1)2a
x=(a2+1)+(a2−1)2a=a2+1+a2−12a=2a22a=a,x=(a2+1)−(a2−1)2a=a2+1−a2+12a=22a=1a
Hence, x=1a or x=a.