Given equation: x2−3(x+3)=0
⇒ x2−3x−9=0
Comparing with ax2+bx+c=0 we get, a=1,b=−3 and c=−9
We know that, for the equation ax2+bx+c=0
x=−b±√b2−4ac2a are roots of the equation.
⇒ x=−(−3)±√(−3)2−4(1)(−9)2×1
⇒x=3±√9+362
⇒x=3±√452=3±6.7082
⇒ x=3+6.7082 or x=3−6.7082
⇒ x=9.7082 or x=−3.7082
⇒ x=4.854 or x=−1.854
∴ x=4.9 or x=−1.9 corrected to two significant figures.