The correct option is
D 3n+53n+1=1.22+2.32+3.42+...+n(n+1)212.2+22.3+32.4+...+n2(n+1)=(2−1).22+(3−1).32+(4−1).42+...+(n+1−1)(n+1)212.(1+1)+22.(2+1)+32.(3+1)+...+n2(n+1)
=[13+23+33+43+...+(n+1)3]−[12+22+32+42+...+(n+1)2][13+23+33+...+n3]+[12+22+32+...+n2]
=[(n+1)2(n+2)24]−[(n+1)(n+2)(2n+3)6][(n)2(n+1)24]+[(n)(n+1)(2n+1)6]
=(n+1)(n+2)[6(n+1)(n+2)−4(2n+3)]n(n+1)[6(n)(n+1)+4(2n+1)]
=(n+2)[6n2+10n]n[6n2+14n+4]
=2n(n+2)[3n+5]2n[3n2+7n+2]
=(3n+5)(3n+1)