wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the inequality : sin3x<sinx.

A
x[2nπ+π4,2nπ+3π4][2nππ4,2nπ][2nπ+π,2nπ+5π4],nI
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x[3nπ+π4,2nπ+3π4][2nππ4,2nπ][2nπ+π,2nπ+5π4],nI
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x[4nπ+π4,2nπ+3π4][2nππ4,2nπ][2nπ+π,2nπ+5π4],nI
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x[5nπ+π4,2nπ+3π4][2nππ4,2nπ][2nπ+π,2nπ+5π4],nI
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B x[2nπ+π4,2nπ+3π4][2nππ4,2nπ][2nπ+π,2nπ+5π4],nI
we have
sin3x<sinx
sin3xsinx<0

putting value of sin3θ

3sinx4sin3xsinx<0
4sin3x2sinx>0

2sinx(2sinx1)(2sinx+1)>0
|+||+
1/2 0 1/2
12<sinx<0 or sinx>12
2nππ4<x<0+2nπ,2nπ+π<x<2nπ+5π4 and 2nπ+π4<x<3π4+2nπ

so answer is
x[2nπ+π4,2nπ+3π4][2nππ4,2nπ][2nπ+π,2nπ+5π4],nI

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Modulus Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon