Solve the inequation:
12+156x ≤ 5 +3x
and x∈R.
{x: x∈R and x>6}
{x: x∈R and x≤6}
{x: x∈R and x≥6}
Given that:
⇒ 12+116x ≤ 5 +3x
⇒ 12−5 ≤ 3x−116x
⇒ 7 ≤ 18x−11x6
⇒ 7 ≤ 7x6
⇒ x ≥ 6
Since x∈R:
Given:
A= {x:11x−5>7x+3,x∈R} and
B= {x:18x−9≥15+12x,x∈R}.
Find the range of set A∩B.
Given A={x:11x−5>7x+3,xϵR} and B={x:18x−9≥15+12x,xϵR}. Find the range of set A∩B.
Write each of the following subsets of R as an interval: (i) A={x:xϵR,−3<x≤5}
(ii) B={x:xϵR,−5<x≤−1}
(iii) C={x:xϵR,−2≤x<0}
(iv) D={x:xϵR,−1≤x≤4}
Find the length of each of the above intervals