The given in equation is equivalent to
8.22(x2−5x)+6.2x2−5x.3x2−5x−32(x2−5x)≥0
Let 2x2−5x=f(x)and3x2−5x=g(x)
Then 8.f2(x)+6f(x).g(x)−27g2(x)≥0
dividing in each by g2(x)
then 8(f(x)g(x))2+6(f(x)g(x))−27≥0andletf(x)g(x)=t(t>0)then8t2+6t−27≥0⇒(t−3/2)(t+9/4)≥0⇒t≥3/2andt≥−9/4
the second inequation has no root (∵t>0)
From the first inequation
t≥3/2(23)x2−5x≥(23)−1(∵23<1)⇒x2−5x≤−1⇒x2−5x+1≤0
∴5−√212≤x≤5+√212
Hencexϵ[5−√212,5+√212]