(x+3)4+(x+5)4≥4Let y=x+3+x+52=x+4 So x=y−4(y−1)4+(y+1)4≥4
(y2+2y+1)2+(y2−2y+1)2≥4
(y4+4y2+1+4y3+4y+2y2)+(y4+4y2+1−4y3−4y+2y2)≥4
y4+4y2+1+2y2≥2
y4+6y2−1≥0
y2=−6±√102
(y2−(−6−√102))(y2−(−6+√102))≥0
So x∈(−∞,−4−√√10−3)∪(−4+√√10−3,∞)