Evaluate :∫sin5x2sinx2dx
x+2sinx+sin2x+c
x+2cosx+sin2x+c
x-2sinx+sin2x+c
x+2sinx-sin2x+c
Explanation for the correct option:
Given: ∫sin5x2sinx2dx
Let I=∫sin5x2sinx2dx
=∫2sin5x2cosx2sinxdx=∫sin3x+cos2xsinxdx∵sina+sinb=sina+b2cosa-b2=∫3sinx-4sin3x-2sinxcosxsinxdx∵sin3x=3sinx-4sin3x=∫3sinxsinx-4sin3xsinx-2sinxcosxsinxdx=∫3-4sin2x-2cosxdx=∫3-21-cos2x-2cosxdx∵1-cos2x=sin2x2=∫3-2cos2x-2cosxdx=x+2sin2x2+2sinx2+c=x+sin2x+sinx+c
Therefore the value of integration is x+2sinx+sin2x+c
Hence, the correct option is (A)