limx→π2(cotx-cosx)3(π-2x)
116
18
14
124
Explanation for the correct answer:
Step 1:
Given limit is limx→π2(cotx-cosx)3(π-2x) solving by simplifying it we get,
⇒18limx→π2cosx(1-sinx)sinxπ2-x3
Now, replacing x→π2-h without affecting the limit as h→0 so,
⇒18limh→0cosπ2-h(1-sinπ2-hsinπ2-hπ2-π2-h3=18limh→0sinh(1-cosh)coshh3
Step 2:
⇒18limh→0sinh2sin2h2coshh31-cosx=2sin2x2
⇒14limh→0sinhh.sinh2h22.1cosh.14
Step 3:
Now, as we know limr→0sinrr=1limr→0cosr=1 so, we get
⇒14limh→0sinhh.sinh2h22.1cosh.14=14×14=116
So, limx→π2(cotx-cosx)3(π-2x)=116
Hence, the correct option is (A)