The correct option is C [−3,12]
Given,
2x2+5x−3≤0
⇒2x2+6x−x−3≤0
⇒2x(x+3)−1(x+3)≤0
⇒(2x−1)(x+3)≤0 ...(i)
Two cases arises:
Case I:
(i) holds,
if (2x−1)≥0 and (x+3)≤0
if x≥12 and x≤−3
No such x exist.
Case II:
(i) holds,
if (2x−1)≤0 and (x+3)≥0
if x≤12 and x≥−3
if −3≤x≤12
if x∈[−3,12]
Option C is correct.