Solve 2cos2x+3sinx=0.
We have given:
2cos2x+3sinx=0
⇒2(1-sin2x)+3sinx=0[∵cos2x=1-sin2x]⇒2-2sin2x+3sinx=0⇒2sin2x-3sinx-2=0⇒2sin2x-4sinx+sinx-2=0⇒2sinx(sinx-2)+1(sinx-2)=0⇒(sinx-2)(2sinx+1)=0Eithersinx-2=0or2sinx+1=0⇒sinx=2orsinx=-12
Since, sinx=2 is not possible as the range of sinx is [-1,1].
So, for sinx=-12, we know that sin is negative in third and fourth quadrant so.
So, x=π+π6orx=2π-π6[∵sinπ6=12]⇒x=6π+π6orx=12π-π6⇒x=7π6orx=11π6
Hence, x=7π6orx=11π6 is the solution of given trigonometric function.
Solve:2cos2x+3sinx=0