logaxlogaxyz=48(equation
1)
logaylogaxyz=12(equation 2)
logazlogaxyz=84(equation 3)
Adding euation 1,2 and 3:
⇒loga(xyz)(logax+logay+logaz)=144
⇒loga(xyz)loga(xyz)=144
⇒(loga(xyz))2=144
⇒logaxyz=+12
⇒xyz=a12
And ⇒logaxyz=−12
⇒xyz=a−12
So,
⇒xyz=a12,a−12(equation 4)
equation 1−4× equation 2
Then,
⇒logaxlogaxyz−4logaylogaxyz=0
⇒logaxyz(logax−4logay)=0
⇒logaxyz≠0
And, ⇒logax=4logay
⇒x=y4
equation1−74×equation2
⇒logazlogaxyz−74logaxlogaxyz=0
⇒logaxyz(logaz−74logax)=0
⇒logaxyz≠0
And, ⇒logaz=74logax
⇒z=x7/4
From equation 4
⇒xyz=a12
⇒(x)(x)1/4(x)7/4=a12
⇒x3=a12
⇒x=a4
So, y=a,z=a7
or,
⇒xyz=a−12
⇒(x)(x)1/4(x)7/4=a−12
⇒x3=a−12
⇒x=a−4
So, y=a−1,z=a−7
Therefore, (xyz):(a4,a,a7) or (a−4,a−1,a−7)