Solve the system of equations.
2x+3y+10z=4;4x−6y+5z=1 and 6x+9y−20z=2
Let 1x=p,1y=q, and 1z=r, then the given equations become 2p+3q+10r=4,4p−6q+5r=1,6p+9q−20r=2
The system can be written as AX=B where
A=⎡⎢⎣23104−6569−20⎤⎥⎦,X=⎡⎢⎣pqr⎤⎥⎦,B=⎡⎢⎣412⎤⎥⎦
Here, |A|=⎡⎢⎣23104−6569−20⎤⎥⎦=2(120−45)−3(−80−30)+10(36+36)=150+330+720=1200
Thus, A is non-singular. Therefore, its inverse exists.
Therefore, the above system is consistent and has a unique solution given by X=A−1B
Cofactors of A are
A11=120−45=75,A12=−(−80−30)=110,A13=(36+36)=72A21=−(−60−90)=150,A22=(−40−60)=−100,A23=−(18−18)=0A31=15+60=75,A32=−(10−40)=30,A33=−12−12=−24
∴adj(A)=⎡⎢⎣7511072150−10007530−24⎤⎥⎦T=⎡⎢⎣7515075110−10030720−24⎤⎥⎦
Now, A−1=1|A|(adjA)=11200⎡⎢⎣7515075110−10030720−24⎤⎥⎦
∴x=A−1B⇒⎡⎢⎣pqr⎤⎥⎦=11200⎡⎢⎣7515075110−10030720−24⎤⎥⎦⎡⎢⎣412⎤⎥⎦
=11200⎡⎢⎣300+150+150440−100+60288+0−48⎤⎥⎦=11200⎡⎢⎣600400240⎤⎥⎦=⎡⎢ ⎢ ⎢⎣121315⎤⎥ ⎥ ⎥⎦
⇒p=12,q=13,r=15⇒1x=12,1y=13,1z=15⇒x=2,y=3 and z=5.