The correct option is B x=−(a+b+c);y=ab+bc+ca;z=−abc
Here, D=∣∣
∣
∣∣a2a1b2b1c2c1∣∣
∣
∣∣
R1→R1−R2,R2→R2−R3
=∣∣
∣
∣∣a2−b2a−b0b2−c2b−c0c2c1∣∣
∣
∣∣
=(a−b)(b−c)∣∣
∣∣a+b10b+c10c2c1∣∣
∣∣
D=(a−b)(b−c)(a−c)
Now,D1=∣∣
∣
∣∣−a3a1−b3b1−c3c1∣∣
∣
∣∣
R1→R1−R2,R2→R2−R3
=−∣∣
∣
∣∣a3−b3a−b0b3−c3b−c0c3c1∣∣
∣
∣∣
=−(a−b)(b−c)∣∣
∣
∣∣a2+ab+b210b2+bc+c210c3c1∣∣
∣
∣∣
=−(a−b)(b−c)[a2−c2+(a−c)b]
⇒D1=−(a−b)(b−c)(a−c)(a+b+c)
Now, D2=∣∣
∣
∣∣a2−a31b2−b31c2−c31∣∣
∣
∣∣
=−∣∣
∣
∣∣a2−b2a3−b30b2−c2b3−c30c2c31∣∣
∣
∣∣
=−(a−b)(b−c)∣∣
∣
∣∣a+ba2+ab+b20b+cb2+bc+c20c2c31∣∣
∣
∣∣
=−(a−b)(b−c)[ac2+bc2−a2c−a2b]
Δ2=−(a−b)(b−c)(a−c)(ab+bc+ac)
Now, D3=∣∣
∣
∣∣a2a−a3b2b−b3c2cc3∣∣
∣
∣∣
=−abc∣∣
∣
∣∣a1a2b1b2c1c2∣∣
∣
∣∣
D3=−abc∣∣
∣
∣∣a2a1b2b1c2c1∣∣
∣
∣∣
D3=−abcD
Hence, x=D1D=−(a+b+c)
y=D2D=−(ab+bc+ac)
z=D3D=−abc